一篇文章看懂新能源汽车关键技术及其当前水平(2)

VCU硬件采用标准化核心模块电路( 32位主处理器、电源、存储器、CAN )和VCU专用电路(传感器采集等)设计;其中标准化核心模块电路可移植应用在MCU和BMS,平

VCU硬件采用标准化核心模块电路( 32位主处理器、电源、存储器、CAN  )和VCU专用电路(传感器采集等)设计;其中标准化核心模块电路可移植应用在MCU和BMS,平台化硬件将具有非常好的可移植性和扩展性。随着汽车级处理器技术的发展,VCU从基于16位向32位处理器芯片逐步过渡,32位已成为业界的主流产品。

底层软件以AUTOSAR汽车软件开放式系统架构为标准,达到电子控制单元(ECU)开发共平台的发展目标,支持新能源汽车不同的控制系统;模块化软件组件以软件复用为目标,以有效提高软件质量、缩短软件开发周期。

应用层软件按照V型开发流程、基于模型开发完成,有利于团队协作和平台拓展;采用快速原型工具和模型在环(MIL)工具对软件模型进行验证,加快开发速度;策略文档和软件模型均采用专用版本工具进行管理,增强可追溯性;驾驶员转矩解析、换挡规律、模式切换、转矩分配和故障诊断策略等是应用层的关键技术,对车辆动力性、经济性和可靠性有着重要影响。

表2为世界主流VCU供应商的技术参数,代表着VCU的发展动态。

表2VCU技术参数


国外主流厂商 1  

国外主流厂商 2  

尺寸( mm)

185*127*65

220*170*45

CPU 架构

Freescale 32 位  (MPC5642), 单核 120MHz

+Delphi ASIL C

Freescale 32 位  (MPC5644),

单核 120Mhz

+ Freescale 8 位  (S9S08DZ60)

软件架构

参考 AutoSAR

非 AutoSAR

通讯方式

CAN 、 LIN  、 SPI 、 FlexRay

CAN 、 LIN  、 SPI

工作电压

10~16V (不兼容  24V 系统)

9~16V (不兼容  24V 系统)

功能安全

可通过扩展相关芯片满足 ISO26262 ASIL  C

符合 ISO26262 ASIL C

3.2MCU

MCU是新能源汽车特有的核心功率电子单元,通过接收VCU的车辆行驶控制指令,控制电动机输出指定的扭矩和转速,驱动车辆行驶。实现把动力电池的直流电能转换为所需的高压交流电、并驱动电机本体输出机械能。同时,MCU具有电机系统故障诊断保护和存储功能。

MCU由外壳及冷却系统、功率电子单元、控制电路、底层软件和控制算法软件组成,具体结构如图4所示。

图4MCU组成

MCU硬件电路采用模块化、平台化设计理念(核心模块与VCU同平台),功率驱动部分采用多重诊断保护功能电路设计,功率回路部分采用汽车级IGBT模块并联技术、定制母线电容和集成母排设计;结构部分采用高防护等级、集成一体化液冷设计。

与VCU类似,MCU底层软件以AUTOSAR开放式系统架构为标准,达到ECU开发共同平台的发展目标,模块化软件组件以软件复用为目标。

应用层软件按照功能设计一般可分为四个模块:状态控制、矢量算法、需求转矩计算和诊断模块。其中,矢量算法模块分为MTPA控制和弱磁控制。

MCU关键技术方案包括:基于32位高性能双核主处理器;汽车级并联IGBT技术,定制薄膜母线电容及集成化功率回路设计,基于AutoSAR架构平台软件及先进SVPWM  PMSM控制算法;高防护等级壳体及集成一体化水冷散热设计。

表3为世界主流 MCU硬件供应商的技术参数,代表着MCU的发展动态。

表3MCU技术参数


国外主流厂商 1  

国外主流厂商 2  

尺寸( mm)

475*245*108

411*454*183

峰值功率

180KVA

320KVA

峰值输出电流

320A

450A

主处理器

TMS320F28335

Infineon

防护等级

IP67

IP69

通讯方式

CAN

CAN

转矩和转速响应时间,转矩和转速控制精度

满足整车控制要求

满足整车控制要求

3.3电池包和BMS

电池包是新能源汽车核心能量源,为整车提供驱动电能,它主要通过金属材质的壳体包络构成电池包主体。模块化的结构设计实现了电芯的集成,通过热管理设计与仿真优化电池包热管理性能,电器部件及线束实现了控制系统对电池的安全保护及连接路径;通过BMS实现对电芯的管理,以及与整车的通讯及信息交换。

电池包组成如图5所示,包括电芯、模块、电气系统、热管理系统、箱体和BMS。BMS能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。

图5电池包组成