为什么全球不同国家选择不同技术路线?溯源锂电池封装发展史(2)

中国以综合性更强的方形电池为主导、软包和圆柱为辅,电芯总产能冠绝全球;美国车企则以圆柱和软包为主,圆柱主要感谢特斯拉在美国有超过70%的市占率,而底特律汽车三大则坚持能量密度更高的软包;欧洲以软包电芯为主导、方形次之,其中纯电车型坚持长续航的软包,德系车企对更符合车规级的方形则青睐有加。

但对于如此大容量的电池组,T-zero终归只完成了原理验证,真正的挑战在于量产后的可靠性和安全性,即便18650已经是当时量产最成熟、批次一致性最高的电池产品,但毕竟采用的电芯数量过多(一代roadster最后确定为6800个电芯、重量450公斤)由此将大大增加单体电芯出现问题后导致整个电池包燃爆的隐患,这要求BMS(电池管理系统)及热管理系统能够监测、控制、均衡到每个单体小电芯的安全状态。

因此当2004年启动量产后特斯拉团队就找到三洋、松下、索尼等成本领先的日本圆柱电池厂商要求采用现成笔记本电脑电池协助设计这套极具创新性、难度较大的电池包及配套热管理方案时,都被以安全问题拒绝了,不死心的特斯拉只能回去自己设计pack方案。

特斯拉也并非没有去尝试新兴的单体电芯容量更大、使用数量更少的软包和方形电芯技术方案,当时特斯拉电池技术总监凯尔蒂测试了市面上超过300种电池,但圆柱方案由于电池单体能量小、制造成本最低且良率最高,且圆柱相间留有安全孔隙,散热性好,在当时是单体出现问题不会对整个系统造成较大损害的唯一电芯方案。最终特斯拉还是坚持了技术更成熟的小圆柱电池路线,坚持认为电池成本、量产的良品率和安全性才是动力电池第一性原理,串并联带来的软件和工程问题再难也要不惜代价攻克。

于是终于在2006年特斯拉技术团队创新性地完成了其独特BMS(电池管理系统)和冷却方案的研发。尤其是其BMS的技术复杂度和难度极强,BMS能够在将近7000个小电芯串并联状态下精准检测和控制每个小电芯的电压和充放电电流状态。

2006年8月特斯拉完成的电池系统技术白皮书及其中披露自行组装的第一代roadster电池包

2006年8月特斯拉完成的电池系统技术白皮书及其中披露自行组装的第一代roadster电池包

2006年8月特斯拉完成的电池系统技术白皮书及其中披露自行组装的第一代roadster电池包

松下与特斯拉的蜜月期

广场协议之后的活久见

而这套热管理方案最终也获得了三洋的认可,2008年特斯拉和刚收购三洋的松下正式开展电池供应合作(虽然松下仍然不够信任,要求特斯拉不能对外公开宣传电池包来自松下、出现安全问题概不负责...),最终到2008年底完成了147台roadster的交付。

虽然roadster截至2012年停产生命周期不过卖了2000多辆,但由此特斯拉和松下开启了基于电动车发展愿景的长期战略合作,2010年松下在特斯拉IPO时背着40亿美金亏损仍然坚决投资3000万美金成为股东,2011年为了保障model S的生产、特斯拉和松下签订了四年6.4亿颗18650电芯的供应协议(接近10万辆的电池装车),2013年续签至18亿颗、订单价值70亿美金,自此开创了特斯拉推动松下圆柱电池舍命狂奔的时代。

2012年面向大众市场的豪华轿车model S正式上线,装载了7104节松下18650电池,电池容量85kWh、续航里程483km,是当时纯电车续航长度之最;并且得益于圆柱电池钢壳结构耐高内压的强束缚性,率先应用了能量密度更高的镍钴铝(NCA)锂电池,单电芯能量密度达到了245Wh/kg,电池包重量和体积得到了进一步优化。最终model S大获成功,2015年便达到5万辆销量、成为全球电动车销量冠军。

2015年特斯拉又一鼓作气推出了豪华SUV车型model X,电池容量扩大到100kWh、8256节18650松下NCA电池组成,续航565km。model X也同样于2017年销量突破5万辆。

可以说在当时,采用小容量圆柱电池串联是特斯拉比业内其他公司更快速地(2012年)能够以低成本、高良率量产出大容量电池组来抢占市场、巩固领先位置的核心原因,随后直至2016年通用汽车才在Bolt车型上推出了60kWh的大容量软包电池组。

特斯拉2009-2017年主要车型销量

特斯拉2009-2017年主要车型销量

松下则凭借独家供应18650给特斯拉model S和X两款车型,2014年实现2.7GWh动力电池出货、其中特斯拉圆柱电池就出了2.6GWh,2015年、2016年分别达到4.5GWh和7.2GWh,松下成功从2012年至2016年连续五年霸榜全球动力电池装机量第一(直至2017年被宁王超越)。

这段时间是松下与特斯拉的蜜月期,松下甚至在2014年参与了特斯拉在美国内华达州超级工厂Gigafactory投资额50亿美金中16亿美金的出资,2012年上任协助松下集团实现扭亏的新任社长津贺一宏甚至还多次对外表示老迈的松下需要变化,要多多“use Elon's thinking”。

海外电动乘用车市场电池企业装机量(GWh)及海外电动乘用车市场电池企业装机量占比

海外电动乘用车市场电池企业装机量(GWh)及海外电动乘用车市场电池企业装机量占比

软包和方形电池的反击

中韩登上舞台

但松下凭借18650圆柱电池走上巅峰的背后,风险已然开始暗流涌动。意图掀起波澜的正是曾被特斯拉pass过的软包和方形电池,背后的韩国和中国的电池厂商们正在登上舞台,瞄准的正是圆柱电池单体容量小带来的成组效率低、成组能量密度损失大、BMS要求过高等广大车企痛点。

2010年-2021年间,在软包和方形电芯通过持续工程化改进、做大单体容量,持续缩小与圆柱电芯在单体能量密度上的差距:其中软包电池实现了能量密度上对圆柱的反超,2010年起也完成了畅销量产车型的装机验证,软包成熟度相较特斯拉创业初期大幅提升;而与圆柱同样采用卷绕工艺为主、成本较低的方形电池在短板能量密度上的改善幅度则更为巨大。相比之下,圆柱的性能发展曲线的斜率在很长一段时间放缓了,性能优势慢慢不再突出,成本差距也在大幅缩小。

2010年-2021年间方形、软包、圆柱电芯的单体容量和能量密度变化

2010年-2021年间方形、软包、圆柱电芯的单体容量和能量密度变化

2010年-2021年间方形、软包、圆柱电芯的单体容量和能量密度变化

2005年-2017年间方形、软包、圆柱锂电池成本变化

2005年-2017年间方形、软包、圆柱锂电池成本变化

与此对应的是,圆柱电池在全球范围市场份额陷于停滞状态。可以说,18650小圆柱给了特斯拉在特定阶段技术领先的先发优势,却面临了其他技术路线快速进步带来的产业链上的孤立无援,软包和方形电池正在全球攻城略地。

2010年-2021年间圆柱cylindrical,方形prismatic,软包pouch全球份额的变化(未知部分主要为中国市场、方形为主)

2010年-2021年间圆柱cylindrical,方形prismatic,软包pouch全球份额的变化(未知部分主要为中国市场、方形为主)

软包电池快速占领全球市场三分之一

软包动力电池的发展最早由日本AESC以及韩国LG化学推动。1994年贝尔实验室为了绕开索尼圆柱专利而发明了软包电池,最初用于3C领域,于2007年日产和日本电气合资电池公司AESC把用于手机软包电池打造成符合车规级标准的大软包。

软包电池采用了不同于卷绕的叠片工艺,内部结构由“正极片-隔膜-负极片”通过Z字型依次紧密层叠起来、设计灵活并减少了边角处空间浪费,外部用轻量化铝塑膜封装、替代了钢壳铝壳,两者都增加了软包在能量密度上的优势。随着软包电池技术的不断成熟很快凭借高能量密度、体积形状灵活多变带来的高整车适配性优势,获得了欧美主流传统车企的偏爱。

2010年日产推出了装载AESC 24kwh软包电池的纯电车型聆风Leaf,事实上是全球真正意义上第一个实现大规模量产的纯电动汽车,这款紧凑型纯电A级车起售价仅3万美金、是2年后model S起售价不到一半,面向大众市场一经推出大受欢迎,至2014年累计销量10万辆、至2015年累计超20万辆,一直销售至今销量突破100万辆,建立了软包很好的验证和示范效应。但AESC由于配套日产、缺乏竞争、成本较高,并且错误押注了低能量密度的过渡路线锰酸锂,尽管抱着日产Leaf大单品的巨大出货量,却未能完成软包的市场化供应。

装载ASEC 24kwh软包电池的日产聆风Leaf

装载ASEC 24kwh软包电池的日产聆风Leaf

LG化学是真正将软包电池推向欧美市场大规模运用的厂商,LG化学紧随AESC其后也于2010年完成软包电池的量产,研发出了空间更紧凑的世界第一款阶梯式和六角形的软包电池,并率先运用上了杀手锏——高能量密度的镍钴锰(NCM532)锂电池与走圆柱路线的松下NCA进行对标,2010年后拿下了整个底特律三大包括通用第一款量产的增程车型雪佛兰Volt和纯电SUV车型Bolt、福特的福克斯电动版、克莱斯勒大捷龙电动版,以及在欧洲畅销的韩国现代起亚的首批电动车型Avante和Forte。

2014年,AESC和LG化学纷纷挤进动力电池厂商全球前三,全球软包份额达到了33%。2015年后LG化学乘胜追击,在2017年日产决定止损剥离AESC后(最后买家是中国远景动力)抢夺下了日产Leaf和雷诺Zoe的订单,又拿下了大众、戴姆勒、沃尔沃等核心欧洲汽车集团定点,成为软包电池领域龙头,韩国小老弟SKI也通过软包路线拿下诸多主机厂二供角色。